Bionic Spine Design Revolutionizes Soft Robots

In a recent study published in the journal The Innovation, researchers proposed a bionic spine concept for soft robots, aiming to enhance their adaptability and intelligence through the integration of sensing and actuation capabilities. They drew inspiration from the highly evolved backbones of vertebrate animals, which coordinate sensory input and motor control, and created a device that mimicked this functionality in soft robots.

Bionic Spine Enhances Soft Robots
Study: Bionic Spine Enhances Soft Robots' Adaptability. Image Credit: chayanuphol/


Soft robots, made of flexible materials such as rubber, silicone, or polymer, have gained significant attention in the field of robotics due to their flexibility and adaptability to navigate unstructured environments effectively. These robots, capable of mimicking the structure and function of biological organisms such as octopuses or starfish, offer several key advantages, like high deformability, adaptability, and safety. However, they also face challenges such as low efficiency, limited intelligence, and complex control.

A crucial component of soft robots is the spine, which provides support, drive, and sensing for the robot's body, enabling it to perform complex motions like bending, twisting, or crawling. However, most existing spine designs are limited to either sensing or driving the robot and often rely on external sensors or controllers, increasing the system's complexity and cost. Therefore, there is a need for a spine design that can perform both sensing and driving functions simultaneously and integrate them seamlessly into the soft robot's body.

About the Research

In this paper, the authors developed a novel bionic spine design for soft robots that integrates sensing and actuation capabilities into a single device. The bionic spine utilizes the reversible piezoelectric effect of materials like lead zirconate titanate (PZT) to convert mechanical stress into electrical signals for sensing and generate electric signals for actuation. This design eliminates the need for separate sensing and actuation components, making the system more efficient and less complex.

The bionic spine is composed of three parts: a PZT layer, a soft rubber layer, and a conductive layer. The PZT layer is sandwiched between the soft rubber layer, which provides flexibility and elasticity, and the conductive layer, which offers electrical connection and shielding. The bionic spine can be fabricated using a simple and low-cost hot pressing and cutting method.

The researchers developed and tested a soft robot featuring four bionic spines as its main body. This robot can execute a closed-loop workflow encompassing environment recognition, self-decision-making, and active regulation. This capability allows it to move efficiently and avoid obstacles across diverse terrains, including land and water.

Additionally, the robot can adapt to various environments and tasks, such as climbing, swimming, and carrying loads, demonstrating the versatility and potential of the bionic spine design. Moreover, a learning-based gait adjustment algorithm enables the robot to recognize and actively adapt to changing environmental conditions.

Research Findings

To evaluate the performance and functionality of the bionic spine and the soft robot, the authors conducted a series of experiments. They measured the piezoelectric properties of the bionic spine, including output voltage, output power, and sensitivity. The outcomes revealed that the bionic spine could produce a maximum output voltage of 3.2 V and a maximum output power of 0.8 mW at a bending angle of 90° and a frequency of 1 Hz. Additionally, the bionic spine exhibited high sensitivity in detecting deformation and strain, with values of 0.12 V and 0.06 V, respectively.

Furthermore, the paper assessed the locomotion and obstacle avoidance capabilities of the soft robot across various terrains. The soft robot demonstrated impressive performance, achieving a maximum speed of 8.4 cm/second and a maximum step length of 6.8 cm on flat ground.

It successfully climbed a slope of 30°, crossed a stair with a height of 3 cm, traversed a sand pit measuring 10 cm in depth, navigated through a grass field with a height of 15 cm, and swam in water at a speed of 2.4 cm/second. Moreover, the soft robot showcased effective obstacle avoidance by adapting its shape and direction to navigate around obstacles of different shapes and sizes, including cylinders, cones, and cubes.


The bionic spine soft robot, with its high flexibility, adaptability, and intelligence, shows great potential for various applications in exploration, rescue, and medical fields. Its ability to navigate and interact with unstructured environments makes it suitable for exploring unknown and complex terrains, such as caves, tunnels, or underwater areas, and gathering valuable data.

In rescue operations, the bionic spine soft robot can assist in searching for survivors, delivering supplies, or clearing debris, potentially improving the efficiency and safety of missions. Additionally, the robot's adaptability and sensing capabilities make it a promising tool for medical purposes, such as drug delivery, minimally invasive surgery, or rehabilitation therapy, where precise and gentle manipulation is crucial.


In summary, the researchers introduced a significant advancement in the field of intelligent and adaptable soft robots through the development of the bionic spine soft robot. By harnessing reversible piezoelectric effects, this innovation demonstrated the potential to create soft robots capable of complex tasks and behaviors in diverse environments, all without the need for external sensors or controllers.

Future work could focus on refining the design and performance of the bionic spine and soft robot, exploring alternative physical effects, and creating diverse and multifunctional soft robots.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.


Article Revisions

  • May 31 2024 - Title changed from "Bionic Spine Enhances Soft Robots' Adaptability" to "Bionic Spine Design Revolutionizes Soft Robots"
Muhammad Osama

Written by

Muhammad Osama

Muhammad Osama is a full-time data analytics consultant and freelance technical writer based in Delhi, India. He specializes in transforming complex technical concepts into accessible content. He has a Bachelor of Technology in Mechanical Engineering with specialization in AI & Robotics from Galgotias University, India, and he has extensive experience in technical content writing, data science and analytics, and artificial intelligence.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Osama, Muhammad. (2024, May 31). Bionic Spine Design Revolutionizes Soft Robots. AZoRobotics. Retrieved on July 18, 2024 from

  • MLA

    Osama, Muhammad. "Bionic Spine Design Revolutionizes Soft Robots". AZoRobotics. 18 July 2024. <>.

  • Chicago

    Osama, Muhammad. "Bionic Spine Design Revolutionizes Soft Robots". AZoRobotics. (accessed July 18, 2024).

  • Harvard

    Osama, Muhammad. 2024. Bionic Spine Design Revolutionizes Soft Robots. AZoRobotics, viewed 18 July 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.