Changing External Magnetic Field Could Turn Two-Faced Magnetic Beads into Micro-Robots

Thanks to the ordering effects of two-faced magnetic beads, they can be turned into useful tools controlled by a changing external magnetic field

Transformation of particle clusters while exposed to an oscillating external magnetic field.

Janus was a Roman god with two distinct faces. Thousands of years later, he inspired material scientists working on asymmetrical microscopic spheres—with both a magnetic and a non-magnetic half—called Janus particles. Instead of behaving like normal magnetic beads, with opposite poles attracting, Janus particle assemblies look as if poles of the same type attract each other. A new study reveals that the dynamics of such assemblies can be predicted by modelling the interaction of only two particles and simply taking into account their magnetic asymmetry. These findings were recently published in EPJ E by Gabi Steinbach from the Chemnitz University of Technology, Germany, and colleagues at the Helmholtz-Zentrum Dresden-Rossendorf. It is part of a topical issue entitled "Nonequilibrium Collective Dynamics in Condensed and Biological Matter." The observed effects were exploited in a lab-on-a-chip application in which microscopic systems perform tasks in response to a changing external magnetic field.

Initially, the authors experimentally investigated large assemblies of these microbeads with an optical microscope. They then performed numerical simulations based on a simple model featuring off-centred magnetic dipoles, and performed a detailed comparison of both experimental and simulation approaches. Under an oscillating field, the particles continuously revert back to standard magnetic behaviour where the North magnetic poles of particles point towards other particles’ South poles; and this behaviour has been confirmed for as few as two particles.

The authors concluded that the interactions between the off-centred dipoles with the changing external magnetic field transform larger particle clusters into different configurations. For example, they found that staggered bead chains continuously expand to spontaneously form linear chains. This could be harnessed, for instance, to create a zipper-style micro-muscle on a chip; here a staggered chain repeatedly expands and contracts depending on the intensity of the applied field.

Source: https://sciencepod.net/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.