The Use of AI in Breast Cancer Detection

The innovative use of predictive artificial intelligence (AI) could revolutionize how mammograms are used in hospitals and could predict potential breast cancer cases in otherwise healthy patients.

The Use of AI in Breast Cancer Detection

Image Credit: / Okrasiuk

Professor for AI and Health AI Faculty Lead at MIT Regina Barzilay has discovered a unique application of "natural-language processing" a subfield that bridges linguistics, computer science, and artificial intelligence and applies algorithms to textual data.

As a breast-cancer survivor herself, Barzilay thought about shifting her research and applying artificial intelligence risk models in clinical practice. So, Barzilay and one of her students Adam Yala developed an AI that has an uncanny ability to detect whether or not breast cancer will develop in patients.

"The responsible deployment of novel AI requires careful validation across diverse populations. To this end, we validate our AI-based model, Mirai, across globally diverse screening populations," explains Barzilay in the paper recently published in the Journal of Clinical Oncology.

Barzilay and her team applied the AI, which they have named Mirai, to an analysis of a mammogram's byzantine pixels, which was then cross-referenced with thousands of previously taken mammograms from which Mirai made its predictions.

Training Mirai

Mirai is an innovative combination of tech and health care that could radically change the future of breast cancer by saving millions of lives without the need for intensive therapeutic treatment. The researchers trained Mirai by feeding the algorithm more than 200,000 Mass General mammograms from a pool of people who went on to both develop and not develop breast cancer.

From this data Mirai would scan each of the mammograms and from all the data make its prediction, the team then fed the actual result into the algorithm and depending on if this aligned with the prediction or not, Mirai would either be rewarded or penalized.

Subsequently, Mirai was able to identify the future potential of developing breast cancer drawing from the pre-existing mammograms. Once the training of Mirai was complete the team then progressed onto the next phase of the study.

The researchers collected a further 129,000 mammograms taken from 2008 to 2016, from 62,000 patients in seven hospitals in five countries — Brazil, Israel, Sweden, Taiwan, and the United States — and from there, Mirai was tasked with making its predictions.

"We evaluated Uno's concordance-index for Mirai in predicting risk of breast cancer at one to five years from the mammogram.

Regina Barzilay, Professor for AI and Health AI Faculty Lead, MIT

Over the course of the study Mirai predicted, on average, around 76 of every 100 cases, which translates to millions of lives in the real world. For results showing above 2.5% on a five-year cumulative risk score the AI automatically recommended further screening such as an MRI or biopsy.

Transforming Preventative Care

While the researchers did not train Mirai to distinguish between cancers of varying degrees of aggressiveness, the results are a promising step forward in the diagnostics field. Presently, radiologists are limited to how much they can disseminate from the mammograms as markers such as increased breast density are not always reliable as healthy women can also have dense breasts.

However, Mirai can "see" much more from the data and finetune its predictions as a result which enhances current approaches and could even improve pre-existing traditional race scores to take eliminate racial bias as seen with other models.

This is encouraging as breast cancer disproportionally affects some ethnic and racial groups and could therefore transform preventative care across the board. Mirai was able to reflect real-world statistics. Therefore, introducing more accurate risk scores led to the development of methods to protect the health and well-being of potential breast cancer patients.

Barzilay and her team hope to get Mirai to the next stage of approval so real-world rollout could be possible in the near future; trials have been planned in Winston-Salem N.C. where Mirai will be used on as many as 150,000 patients who will have mammograms.


1. Yala, Adam et al. 'Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model'. Journal of Clinical Oncology. November 2021. DOI: 10.1200/JCO.21.01337 

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

David J. Cross

Written by

David J. Cross

David is an academic researcher and interdisciplinary artist. David's current research explores how science and technology, particularly the internet and artificial intelligence, can be put into practice to influence a new shift towards utopianism and the reemergent theory of the commons.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cross, David. (2021, December 23). The Use of AI in Breast Cancer Detection. AZoRobotics. Retrieved on February 28, 2024 from

  • MLA

    Cross, David. "The Use of AI in Breast Cancer Detection". AZoRobotics. 28 February 2024. <>.

  • Chicago

    Cross, David. "The Use of AI in Breast Cancer Detection". AZoRobotics. (accessed February 28, 2024).

  • Harvard

    Cross, David. 2021. The Use of AI in Breast Cancer Detection. AZoRobotics, viewed 28 February 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Azthena logo powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.