AI Distinguishes Between Normal and Abnormal X-Rays

Medical imaging plays an important role in diagnosing and treating medical conditions. However, there is a growing demand for these imaging modalities, and with it comes a shortage of trained radiologists. One potential solution to this problem is the development of artificial intelligence (AI) tools that can automate the interpretation of medical images, thus reducing the workload on radiologists.

AI Distinguishes Between Normal and Abnormal X-Rays

Image Credit: 15Studio/

While AI has shown great promise in this area, it is essential to thoroughly evaluate its performance before implementing it in a clinical setting. Recently, a study published in the journal Radiology focuses on this issue by showing that an AI tool can accurately identify normal and abnormal chest X-rays.

Artificial Intelligence for Interpreting Chest Radiographs

Chest radiography is a common imaging technique used to diagnose a variety of medical conditions. Due to the high volume of chest radiographs produced daily, there is a growing need to find efficient and accurate ways to interpret these images. Deep learning-based AI algorithms have drawn attention recently as a potentially useful tool for radiology picture classification.

Specifically, researchers have been working on developing AI models that can differentiate between normal and abnormal chest X-rays.

These models have the potential to improve the triaging of radiographs and reduce the time it takes to interpret them. In addition, there has been growing interest in developing an AI tool that can autonomously describe normal chest radiographs without human intervention. Such a technology could help alleviate the growing shortage of radiologists by automating the interpretation of normal chest radiographs.

Recent feasibility tests have yielded encouraging findings, with an AI tool accurately ruling out anomalies with high confidence in about 15% of chest radiographs generated.

Limitations and Considerations for AI Interpretation of Chest X-rays

Despite the great potential of employing AI to interpret chest X-rays, several restrictions must be considered. This study topic is still relatively new, and the existing models have not been widely adopted in clinical settings.

Moreover, the effectiveness of AI models has yet to be well-characterized in therapeutically relevant patient groups, with direct comparison to existing radiology reporting standards.

The use of AI tools for identifying normal and abnormal chest X-rays requires further investigation, as it is important to thoroughly evaluate the reliability and performance of these models in real-world clinical settings before implementing them in routine practice.

Highlights of the Current Study

To determine the reliability of using a commercial AI tool for identifying normal and abnormal chest X-rays, the researchers conducted a retrospective, multi-center research. They examined the chest X-rays of 1,529 individuals from four hospitals in Denmark's capital area. Patients from the emergency room, in-hospital patients, and outpatients had their chest X-rays taken.

The AI tool autonomously reported the chest radiography reports as either "high-confidence normal" or "not high-confidence normal," which were then compared to the reference standard provided by two board-certified thoracic radiologists. In cases where there were disagreements, a third radiologist was consulted, and all three radiologists were blinded to the AI results.

The researchers sought to determine the number of chest radiography reports autonomously reported by the AI tool, as well as its sensitivity in detecting abnormal chest radiographs. Additionally, they aimed to compare the performance of the AI tool with that of the clinical radiology report.

Important Findings and Prospects of the Research

The researchers found that the commercially available AI tool was highly accurate in detecting abnormalities on chest X-rays. The tool could potentially automate the reporting of 28% of all normal posteroanterior chest radiographs, translating to 7.8% of the entire chest radiograph production.

The sensitivity of the AI tool was higher than 99%, indicating that it could detect abnormalities with a high degree of accuracy. Interestingly, the AI tool performed better than the clinical board-certified radiologists in terms of sensitivity.

It was particularly adept at identifying normal X-rays of the outpatient group, which suggests that it would be especially useful in outpatient settings where normal chest X-rays are prevalent.

In the future, larger prospective studies could investigate the implementation of the AI tool, with autonomously reported chest X-rays still reviewed by radiologists. These studies could help establish the clinical value of the AI tool and its potential impact on the field of radiology.

Chest X-rays are one of the most common imaging examinations performed worldwide,” said Dr. Plesner, a co-author of the study. “Even a small percentage of automatization can lead to saved time for radiologists, which they can prioritize on more complex matters.”


Plesner, L. L. et al. (2023). Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact.

SourceRadiological Society of North America

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Hussain Ahmed

Written by

Hussain Ahmed

Hussain graduated from Institute of Space Technology, Islamabad with Bachelors in Aerospace Engineering. During his studies, he worked on several research projects related to Aerospace Materials & Structures, Computational Fluid Dynamics, Nano-technology & Robotics. After graduating, he has been working as a freelance Aerospace Engineering consultant. He developed an interest in technical writing during sophomore year of his B.S degree and has wrote several research articles in different publications. During his free time, he enjoys writing poetry, watching movies and playing Football.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ahmed, Hussain. (2023, March 10). AI Distinguishes Between Normal and Abnormal X-Rays. AZoRobotics. Retrieved on October 02, 2023 from

  • MLA

    Ahmed, Hussain. "AI Distinguishes Between Normal and Abnormal X-Rays". AZoRobotics. 02 October 2023. <>.

  • Chicago

    Ahmed, Hussain. "AI Distinguishes Between Normal and Abnormal X-Rays". AZoRobotics. (accessed October 02, 2023).

  • Harvard

    Ahmed, Hussain. 2023. AI Distinguishes Between Normal and Abnormal X-Rays. AZoRobotics, viewed 02 October 2023,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type