Posted in | News | Industrial Robotics

Hummingbird Beak-Inspired Micro Device Design

Cornell research team has created a novel approach to constructing intricate microscale devices that is motivated by the functioning of proteins and hummingbird beaks.

Hummingbird Beak-Inspired Micro Device Design
This metamaterial robot, which can morph into different shapes, is the type of machine Cornell researchers hope to build at the microscale using a new design paradigm inspired by the operation of proteins and hummingbird beaks. Image Credit: Cornell University

The paper was published in Proceedings of the National Academy of Sciences on August 14th, 2023. Itay Griniasty, a Schmidt AI postdoctoral researcher in Itai Cohen’s group in the College of Arts and Sciences, is the lead author.

Building smaller and smaller computers is more than just reducing the components. While macroscopic machines are often compartmentalized, splitting a task into little bits and allocating each to a distinct portion of the machine, proteins, the prototypical microscopic machines responsible for most of life, are structured differently.

Tasks are frequently accomplished by coordinated movement of all of the protein’s components, making them more resistant to the chaos of the microscopic environment.

Previously, Cohen’s group used origami principles to create a variety of microscale devices, ranging from self-folding structures to walking microrobots, that are novel for their size yet possess remarkably simple functions. Adding functionality to origami sheets proves to be a difficult undertaking.

The machines that we have made so far are very, very simple. But when we start thinking about how to increase the functionality in systems that are highly coupled, we started realizing that every time you move one part of the machine, all the other parts move. It’s maddening, because you can’t isolate anything, it is all connected in these sheets. Then we started asking how does this get done in the microscopic world.

Itai Cohen, Professor, Physics, College of Arts and Sciences, Cornell University

They described a protein as a machine that switches between states in response to tiny changes in a few parameters. The researchers were motivated by a macroscale example of this sort of functionality: the hummingbird.

Andy Ruina, the John F. Carr Professor of Mechanical Engineering, demonstrated in a 2010 study how a hummingbird’s beak can be “smoothly opened and then snapped shut through an appropriate sequence of bending and twisting actions by the muscles of the lower jaw.”

This mechanism is described by a mathematical concept known as a cusp bifurcation, in which the beak can have a single stable state, i.e., closed, or two stable states, both open and closed, depending on the pressures exerted by the jaw muscles. The cusp bifurcation occurs when a single stable state separates into two stable ones.

The benefit of working around a cusp bifurcation is that it gives two crucial design aspects. The first is topological protection, which assures a device’s function is consistent so that even if the jaw muscles pull slightly differently, the beak can still open and close.

The second benefit is a lever advantage, which guarantees that the muscles only need to move little to produce a significant shift in the beak. These are the exact components required to achieve function at the microscale.

Cohen, Griniasty, and their colleagues wondered if they could increase the number of states structured around a bifurcation from two to dozens, if not hundreds. This expansion would enable the creation of machines capable of performing complicated functions.

Instead of compounding compartmentalized function, these capabilities would emerge from the entire object. It is dancing together.

Itay Griniasty, Schmidt AI Postdoctoral Researcher, Cornell University

Teaya Yang ‘22 and Yuchao Chen ‘19, both co-authors, were recruited to construct a proof-of-concept macroscale magneto-elastic model featuring a butterfly bifurcation that allowed the system to snap or seamlessly transition between three stable states.

The model was made up of two panels, one of which moved in a plane while the other rotated freely around a fixed hinge. Each panel was adorned with nine magnets that interacted with one another to form complicated interactions similar to those observed in proteins.

The main problem was figuring out how to create magnetic patterns that would cause the required bifurcation. Griniasty and David Hathcock resolved the challenge by devising an algorithm based on the work of A.R. Bullis Professor Emeritus of Mathematics (A&S), John Guckenheimer.

Cohen added, “If we tried to just guess these magnetic patterns, to generate multiple equilibria, we would run out of computing power. So Itay designed a very nice algorithm that simplifies the search.

The concept will then be demonstrated at the microscale.

Cohen further stated, “For a 100-micron machine, like the typical robots that we make, Itay calculated that we could achieve 20 separate states. That is kind of what we envision could be made at the microscale, a machine where I use an actuator to move one of the panels, and the configuration of the entire machine could switch between 20 different configurations. You could have a machine that could, let’s say, locomote through fluid, or maybe do a complicated grasping action.

Paul McEuen, the John A. Newman Professor of Physical Science (A&S), and James Sethna, the James Gilbert White Professor of Physical Sciences (A&S), are co-authors.

The National Science Foundation DMREF program, the Sloan Foundation, the Kavli Institute at Cornell, the Air Force Office of Scientific Research, the Cornell Laboratory of Atomic and Solid State Physics, an NSF Graduate Research Fellowship, and the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship all contributed to the research.

Journal Reference:

Yang, T., et al. (2023) Bifurcation instructed design of multistate machines. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.2300081120

Source: http://cornell.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.