Posted in | Biomimetic Robotics

Nature-Inspired Robotic Bat for Aerial-Supervision of Construction Sites and Nuclear Reactors

The robotic 'bio-bat' demonstrates self-contained autonomous flight by mimicking morphological properties of flexible bat wings. Cover photo reprinted with permission from AAAS.(Credit: AAAS)

For a long time, researchers and engineers have been fascinated by the unmatched agility and maneuvering abilities of bats, realized by its functionally versatile dynamic wing conformations as well as over forty passive and active joints on the wings. However, the bat’s complex wing kinematics wing and flexibility are significant technological challenges for modeling, design, and control of robots.

A team of researchers from the University of Illinois at Urbana-Champaign and Caltech have built a self-contained robotic bat - christened Bat Bot (B2) - with soft, articulated wings that can imitate the main flight mechanisms of real bats.

Our work demonstrates one of the most advanced designs to date of a self-contained flapping-winged aerial robot with bat morphology that is able to perform autonomous flight. It weighs only 93 grams, with dynamic wing articulations and wing conformations similar to those of biological bats.

Alireza Ramezani, Postdoctoral Researcher, Coordinated Science Laboratory

Ramezani is the first author of the cover article, “A Biomimetic Robotic Platform to Study Flight Specializations of Bats,” appearing in AAAS Science Robotics.

Ramezani designed the prototype with his advisors Soon-Jo Chung - currently an associate professor of aerospace at Caltech - and Seth Hutchinson at Illinois. These authors have been partnering with Brown University professors Kenneth Breuer and Sharon Swartz, who are bat flight experts.

“Our work introduces a design scheme to mimic the key flight mechanisms of biological bats,” said Chung, who is also a research scientist at the Jet Propulsion Laboratory, which Caltech manages for NASA. “There is no well-established methodology for reverse engineering the sophisticated locomotion of bats.”

Bats are said to possess the most advanced powered flight mechanism among animals, as seen in the shape-changing capability of its wings. Its flight mechanism includes over 40 types of joints that interlock the muscles and bones to one another forming a musculoskeletal system that can alter shape and is capable of movement in a number of independent directions.

The B2 possesses a number of practical advantages over other aerial robots, such as quadrotors. Bats do have more 40 active and passive joints; we reduced those numbers to 9 (5 active and 4 passive) joints in the B2 robot. The compliant wings of a bat-like flapping robot flapping at lower frequencies (7-10 Hz vs. 100-300 Hz of quadrotors) are inherently safe: because their wings comprise primarily flexible materials and are able to collide with one another, or with obstacles in their environment, with little or no damage.

Soon-Jo Chung, Associate Professor, Caltech

The B2 uses a morphing skeleton array and a silicone-based membrane skin that allows the robot to alter its articulated structure in mid-air without losing a smooth and effective aerodynamic surface.

“Our flight control results are the first demonstration of using asymmetric wing folding of the main flexible wings to control the heading of the aerial robot,” Ramezani added. “Its morphing property cannot be realized with conventional fabrics (such as nylon or mylar) that are primarily used in flapping wing research. Non-stretchable materials resist the forelimb and leg movements in B2. As a result, we covered the skeleton of our robot with a custom-made, ultra-thin (56 micron, silicone-based membrane that is designed to match the elastic properties of biological bats’ membranes.”

Compared to aerial robots currently available, bat-inspired aerial robots provide significant enhancements in energy efficiency. This is because of their articulated soft wing architecture (at least in part) and the fact that wing flexibility boosts the motion of the robot's actuators.

“When a bat flaps its wings, it’s like a rubber sheet,” said Hutchinson, who is a professor of electrical and computer engineering at Illinois. “It fills up with air and deforms. And then, at the end of its down-stroke motion, the wing pushes the air out when it springs back into place. So you get this big amplification of power that comes just from the fact you are using flexible membranes inside the wing itself.”

This video delineates the flight characteristics and shows B2's capabilities. (Credit -Carla Schaffer / AAAS)

One potential application of the B2 is to oversee construction sites.

“Building construction projects are complicated, and rarely do they happen the way they are intended to happen,” Hutchinson said. “Keeping track of whether the building is being put together the right way at the right time is not trivial. So the bat bots would fly around, pay attention, and compare the building information model to the actual building that’s being constructed.”

For example, for tasks that require the aerial robots to be stationary, our bat-inspired aerial robots will eventually be able to perch, instead of hovering, by taking advantage of unique structures in construction sites such as steel frames, side walls, and ceiling frames. This is a more energy-efficient and reliable solution since stationary hovering is difficult for quadrotors in the presence of even mild wind—which is common for construction sites. Furthermore, perching or landing conventional aircraft and quadrotors in such unusual places is nearly impossible, due to their limited control authority at slow motor speeds and aerodynamic couplings such as wall or ground effects.

Soon-Jo Chung, Associate Professor, Caltech

As the B2 does not use high-speed rotors that produce loud, high-frequency noise, it is considerably less disturbing than quadrotors or other aerial robots.

“In addition to construction applications, we envision robotic flapping-wing robots operating in tight quarters with humans and beyond where humans can go,” Chung noted.

For instance, an aerial robot fitted with a radiation detector, temperature and humidity sensors, and 3D camera system could supervise something like the Fukushima nuclear reactors, where the radiation level is very high for humans, or fly into tight crawlspaces such as collapsed buildings or mines. These types of highly maneuverable aerial robots, with longer flight endurance, will also make progresses in the monitoring and recovery of vital infrastructures such as nuclear reactors, bridges, power grids, and borders.

“B2 certainly cannot be used for lifting heavy packages yet, but a future version of Bat Bot could validate the benefits of soft-winged flight, such as improved energy efficiency and safety, for drone-enabled package delivery,” he said.

“Finally, this robot can contribute to biological studies on bat flight,” Hutchinson added. “The existing methods for biology rely on vision-based motion capture systems that utilize high speed imaging sensors to record the trajectory of joints and limbs during bat flight. Although these approaches can effectively analyze the joint kinematics of bat wings in flight, they cannot help understand how specific wing movement patterns contribute to a particular flight maneuver of a bat. B2 can be used to reconstruct flight maneuvers of bats by applying wing movement patterns observed in bat flight, thereby helping us understand the role of the dominant degrees of freedom of bats.”

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit